نگاشت های خطی حافظ وارون پذیری تعمیم یافته و مسایل مربوط به آن
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران
- author عادله صادقی
- adviser علی تقوی جلودار محسن علیمحمدی
- Number of pages: First 15 pages
- publication year 1389
abstract
در این پایان نامه نگاشت های خطی پوشا روی (b(h که حافظ وارون پذیری تعمیم یافته هستند و نیز نگاشت های خطی پوشاحافظ عملگرهای فردهلم (نیمه فردهلم)را بررسی می کنیم به ویژه جوابی برای سوال مختا می یابیم و نشان می دهیم یک فضای باناخ x و یک نگاشت خطی یکانی دوسویی f روی (b(h حافظ وارون پذیری تعمیم یافته در دوسو وجود دارد به طوری که ایده آل همه عملگرهای فشرده روی x تحت f پایا نیست.بعلاوه نشان می دهیم که همریختی های جردن پیوسته تنها نگاشت های خطی یکانی بین دو جبرباناخ یکدار هستند که وارون پذیری تعمیم یافته را اکیدا حفظ می کنند.
similar resources
نگاشت های خطی حافظ معکوس پذیری تعمیم یافته
فرض کنید h یک فضای هیلبرت تفکیک پذیر با بعد نامتناهی و (h)b جبر همه ی عملگرهای خطی کراندار روی h باشند در این صورت اگر نگاشتی خطی، یکه ، دو سویی و کراندار از (h)b به (h)b داشته باشیم به طوری که معکوس پذیری تعمیم یافته را از دو جهت حفظ کند، آنگاه آن نگاشت، خود ریختی یا پادخودریختی است.
15 صفحه اولنگاشت های جمعی قویاَ حافظ معکوس پذیری تعمیم یافته
فرض می کنیم (b(x جبر باناخ همه ی عملگرهای خطی کران دار روی فضای باناخ مختلط xباشد. در این پایان نامه نگاشت های جمعی و خطی قویاَ حافظ انواع معکوس پذیری خصوصاَ معکوس پذیری تعمیم یافته را مورد بررسی قرار می دهیم و از اول بودن و مرکزی بودن (b(x استفاده کرده و نگاشت های خطی و جمعی یک دار، پیوسته و دوسو را دسته بندی می کنیم.
نگاشتهای خطی حافظ وارون پذیری
در این رساله نگاشتهایی را توصیف می کنیم که حافظ وارون پذیری هستند. در بین نگاشتهای خطی حافظ وارون پذیری ، نگاشتهایی وجود دارند که حافظ طیف می باشند. توضیحات مفصل در پایان نامه ارائه شده است.
15 صفحه اولمسایل پایای خطی و وارون پذیری
در این پایان نامه پس از بیان مفاهیم اولیه در مورد طیف ها وارتباط آن با وارون پذیری, نشان خواهیم داد که اگر x و y فضاهای باناخ باشند, آن گاه هر نگاشت خطی پایای پوشای طیف از (b(x به (b(y به یکی از دو شکل (u(t)=ata^(-1 یا (u(t)=bt*b^(-1 است که a یکریغتی میان x و y و b یکریختی میان *x و y است.هم چنین نشان خواهیم داد هر نگاشت پایای طیف از یک جبر فون نیومن به یک جبر باناخ مختلط نیم ساده یک مهریختی جر...
15 صفحه اولشناساپذیری در مدل های خطی تعمیم یافته با اثرهای تصادفی
شناساپذیری یکی از ویژگیهای لازم برای کفایت یک مدل آماری است. وقتی مدلی شناساپذیر نباشد، با هیچ اندازهای از نمونه، نمیتوان پارامتر حقیقی مدل را تعیین کرد. در این مقاله، مروری بر مفهوم مشهور شناساپذیری و ویژگیهای آن شده است. بهعلاوه از آنجایی که مشکل شناساناپذیری در مدلهای خطی تعمیمیافته با اثرهای تصادفی بسیار رایج است، تمرکز اصلی ما بر روی این گونه از مدلها بوده است. از سوی دیگر، معمول...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023